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Abstract:   

  

Emotional Finance introduces the notion that financial markets may be driven by the co-existence 
of fully-rational and emotional investors, driven by phantasy. The analysis of emotional finance is 
informed with reference to a Freudian psychoanalytical framework. In this paper, we add to the 
existing information cascade and herding research by developing an emotional finance model that 
examines the effects of phantasy investors on the decisions of rational investors under dynamic 
ǇǊƛŎƛƴƎΦ  ²Ŝ ŎƻƴǎƛŘŜǊ ŀ ŬƴŀƴŎƛŀƭ ƳŀǊƪŜǘ ŦƻǊ ŀ Ǌƛǎƪȅ ŀǎǎŜǘ ƛƴ ǿƘƛŎƘ ǘƘŜ ǘǊŀŘŜǊǎΩ ŜƳƻǘƛƻƴǎ ŘŜǾŜƭƻǇ ƻǾŜǊ 
time based on how they perform. We propose an elementary agent-based asset pricing model 
consisting of three trader types; fundamental traders, emotional traders, and semi-emotional 
traders. The model comprises two features:  1) an emotional herding mechanism based on 
susceptible-infected susceptible (SIS) model  2) wealth price herding based on wealth preferential 
attachment. Combining analytical and simulation methods, the interaction between these elements 
is studied in a 4-phase plane of the price movement: 1) prices resembling a bull market 2) prices 
resembling a bear market 3) U-shaped pricing trends, and 4) n shaped pricing trends. Finally, we 
compare our approach with a traditional information cascade/herding model incorporating 
phantasy investors. 

 

I. Introduction  

The EMH states that investors are rational and trade without any emotional input, so prices reflect all 
available information at all times. An alternate view is presented by Shefrin (1999), who introduces 
human emotions back into the equation. Shefrin writes that trading is not a solely calculating 
endeavour, but is subject to emotional impulses, such as greed, fear and other basic (and complex) 
human emotions.  

 

It can be argued that all human decisions are emotional, not rational, in nature and there are many 

examples that violate EMH theory, from disappointment aversion (Gul, 1991) to regret theory (Bell, 

1982) and prospect theory (Kahneman and Tversky, 1974 and Tversky and Kahneman, 1992). Taffler 

and Tuckett (2005) have started a major paradigm shift with the development of emotional finance, 

this ground-ōǊŜŀƪƛƴƎ ƴŜǿ ǇŀǊŀŘƛƎƳ ǳǎŜǎ CǊŜǳŘΩǎ ǘƘŜƻǊȅ ƻŦ phantastic objects as an explanation for 

unconscious and infantile emotions that affect investor decisions (Fairchild, 2009). Emotional finance 

theory argues that entire markets, as well as individual stocks, can be analysed with the subconscious 

emotions that result from the belief in phantastic objects (Tuckett, 2011). Market euphoria and a 

subsequent crash can be viewed in terms of the emotions associated with phantastic objects. The 

ǘƘŜƻǊȅ Ƙŀǎ ōŜŜƴ ŀǇǇƭƛŜŘ ǘƻ ǘƘŜ ƛƴǘŜǊƴŜǘ Ƴŀƴƛŀ ƻŦ ǘƘŜ ƭŀǘŜ мффлΩǎ ς in which tech stocks were argued 

to represent the phantasies of the people holding them (Taffler & Tuckett, 2005). Emotional finance 
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has also been applied to the rapid growth and dramatic decline of the hedge fund industry ς hedge 

funds, it is argued, have become phantastic objects for people, mesmerized by stellar gains - and the 

people that run them are almost deified ς that is, until reality sets in and mounting losses and 

liquidation transform the euphoria into anger and blame (Eshraghi & Taffler, 2009).  

 

Therefore, investor irrationality ς driven by human emotions ς cannot be overlooked when financial 
decisions are made. To effectively model herding behaviour, it is of critical importance to give 
ŎƻƴǎƛŘŜǊŀōƭŜ ǿŜƛƎƘǘƛƴƎ ǘƻǿŀǊŘǎ ŦŀŎǘƻǊǎ ǘƘŀǘ ŀƭƭƻǿ ŦƻǊ ǇŜƻǇƭŜΩǎ ŜƳƻǘƛƻƴŀƭ ƛƳǇǳƭǎŜǎΦ 

The development of communication technology and internet increased connectivity among 
Investors, were information and sentiment can transfer among market participants which in some 
incidents can lead to herding and asset price bubble, these sentiments, rumours, and opinions 
spread over networks of contacts between investors and market participants. Understanding the 
intrinsic mechanism behind Herding and emotional cascade in networks is an important task. 
 

 

In this paper, we adopt the susceptible-infected susceptible (SIS) model. The SIS model is one of the 
simplest models in epidemiology and is also known as the contact process model to model 
emotional cascade and we use network preferential attachment to model herding. 
 
This paper is structured such that in Section II (Background Network Theory) the reader in introduced 

to i) Network topology, centrality and network dynamic, Section III introduce some of the literature 

on herding and emotional cascade. Section IV introduce our model of network herding and emotional 

cascade, and finally, in section V and VI, we present the result of the simulation with discussion and 

conclusions. 

 

 

II. The Topology and dynamics of networks 

Networks, consisting of nodes and edges connecting nodes, have been used to study many different 
problems and systems ranging from the famous Konigsburg bridge problem to elementary school 
ŎƘƛƭŘǊŜƴΩǎ ŦǊƛŜƴŘǎƘƛǇ ƎǊƻǳǇǎΣ ǘƻ ǘƘŜ internet and the worldwide web (Newman 2003). Networks have 
seen a resurgence of interest due to two main factors: firstly, the discovery of the scale-free property 
(Barabasi Alber 1999) has far-reaching implications and has provided a means of understanding 
fundamental network growth. Furthermore, the discovery has enabled simulated networks with more 
realistic topologies to be created (Albert Barabasi 2002). It has since become a staple to compare and 
contrast the statistical mechanics of randomly connected networks to those with the scale-free 
property. Insight into many different situations has been gained from such approaches [ref]. Secondly, 
the ever increasing amount of computational power has allowed large networks to be analysed, and 
for the dynamics of such networks to be simulated. 
 
A well-studied aspect of networks is the degree distribution, where the degree of a node is the number 
of edges connecting the node. In random networks, the distribution approaches a Poisson distribution, 
with the peak occurring at about the mean network degree. In scale-free networks, however, the 
degree distribution is best described by ὖὯ Ὧͯ , where k ƛǎ ǘƘŜ ŘŜƎǊŜŜΣ ŀƴŘ ʴ ƛǎ ŀ ǾŀƭǳŜ ōŜǘǿŜŜƴ н 
and 3. It is from this distribution that the scale-free property draws its name, as this distribution does 
not change regardless of the size of the network (Barabasi Albert 2002).  
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However, whilst this is an interesting finding, the most significant finding came from successfully 
building such topologies. Namely, it is argued that by virtue of being able to recreate such topologies 
that we are able to draw greater insight into how it is that networks are formed. This is obviously of 

interest when discussing herding in the market. Indeed, the Barabasi-Albert algorithm for growing a 
scale-free network is based on preferential attachment. Quite simply put, the higher the number of 
connections a node has, the higher the probability is that a new node will connect to the highly 
connected node. This produces a scale-free network with exponents between -2 to -3 in the degree 
distribution. Whilst certain statistical aspects do not match the Barabasi-Albert network to real life 
examples (e.g. local clustering, modularity), it has proven a resilient approach, despite many different 
approaches having been tried in the past decade Bianconi and Barabasi (2001); Mendes, G. & da Silva 
(2009). 
 
 Whilst being able to understand investor networks is of utmost importance, this would require 
something that is not widely available: a real investor network dataset. Furthermore, all network 
analyses suffer from the boundary issues that inevitably occur where a cutoff point is necessary, which 
all social networks are subject to. Thus, in the absence of a standardised dataset that is validated as 
being an exemplary representation of all investor networks, there is little value in trying to determine 
what network evolution best mimics such a network. That is not to say that real networks should not 
be investigated, but rather that networks, social networks, in particular, vary greatly depending on 
what resources are available to construct the network in the first place. It is important to be aware of 
the boundary limitations, and in cases where the objective of the research is to provide generalizable 
findings, a simple, consistent, and simulated network suits these purposes well. 
 
It is thus considered more pertinent to investigate a fundamental concept of topological evolution 
than it is to perfectly replicate a specific network topology. It is by understanding how such a concept 
may be suited for explaining phenomena such as herding. Either the findings will be what would be 
expected, or an emergent effect will arise. Such emergent effects in networks provide a lot of insight 
into how a real system behaves. 
 
As stated, the objective of this paper is to investigate herding. The hypothesis drawn here is that, as 
with the Barabasi-Albert model, investor influence networks are determined by a fitness measure. 
Logic would dictate that in investor influence networks, that fitness measure would be determined by 
outcome (e.g. if someone unknown to the investors were to consistently show that they are able to 
predict the market outcome, it would be expected that investors, particularly emotional ones, would 
ǘǊȅ ǘƻ ŎƻǇȅ ǘƘƛǎ ǇŜǊǎƻƴΩǎ behaviour). A clear leader in such an event would cause a fat-tail, whereas 
homogeneous performance in the market would cause a random network to occur.  
 
However, it is not just the topology that is of interest, there is a growing body of literature on the 
network dynamics. That is to say, how a property propagates through a network. The most famous of 
such studies come from epidemiology, where Susceptible-Infected-Recovered (SIR) or Susceptible- 
Infected -Susceptible models have been studies in many different contexts Barthélémy M, Barrat 
(2004) and  Barthélémy M, Barrat (2005). Interestingly, one would expect that the dynamic measures 
are very much determined by the topology (scale-free vs random), but a seminal paper found that the 
dynamics behave very differently depending on the underlying method of propagation Barzel Barabasi 
(2013) 
 
If we thus accept that topology is affected by performance in the market, and we consider that 
performance in the market is affected by emotion (for emotional investors), which is propagated as a 
property through a network. How then do these two interact? 
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Network evolution and network dynamics 

The evolution of networks studied in-depth in Albert and Barabasi (2002), can be focused to three 

factors: 1) preferential attachment of nodes; 2) how networks grow; 3) external and internal 

connections between nodes.  

The first two factors are necessary for scale-free networks wiǘƘ ŜȄǇƻƴŜƴǘǎ  нҗʴҗоΦ CǳǊǘƘŜǊƳƻǊŜΣ 

fitness can be considered a form of preferential attachment, and Bianconi and Barabasi (2001) 

propose a fitness parameter that where growth produces a scale-free graph with a logarithmic 

correction.  

As in biology where details of structure reveal the functions of a system, the topology of a network 

and analysis of it provides a huge amount of information about a system. Researchers have 

attempted to model cascading of properties within networks (Buldyrev 2001, Motte 2002, Leskovec 

2006, 2000) in the macroscopic (whole network) and microscopic (individual nodes) scale to 

ascertain how information flows. Many attempts have been made to model microscopic 

interactions, but it is acknowledged that in network dynamics there can be the propagation of a 

certain property that may or may not affects overall the topology of the system. 

Borrowed from epidemiology and how infections spread, some researchers such as Lloyd (2001), 

Pastor(2001), Barrat (2004) and Volz (2008), have investigated propagating properties using the 

susceptible-infected-susceptible (SIS) model but applied to artificial networks. For example, Pastor-

Satorras and Vespignani (2001) simulated a SIS epidemic spreading (via emails, file transfers) in 

internet systems previously identified to be scale-free (Albert and Barabasi, 1999). Research 

(Kephart, 1994,  Maia, 2007) on random graphs has shown that above an epidemic rate critical 

ǘƘǊŜǎƘƻƭŘ ό˂Ŏύ ǘƘŜ ƛƴŦŜŎǘƛƻƴ ǇŜǊǎƛǎǘǎ ŀƴŘ ōŜƭƻǿ ǘƘŜ threshold, the epidemic dies out.  

This model reveals why epidemics take so long to die out: most viruses are eradicated within two 

months, but many viruses are still propagating disease many months later ς ǘƘŜ ŎƭŀǎǎƛŎ ΨƭƻƴƎ ǘŀƛƭΩ ƻŦ 

the power law.   

De Aguiar and Bar-Yam (2005) take the analysis further by modelling the effect of perturbations on 

the networks. Analysing spectral density, they have shown that the density of states contains 

information about network topology, and also regarding how external perturbations affect network 

dynamics. 

There is not always agreement among researchers looking for common properties across various 

networks. But some argue that by utilising similar frameworks that mimic network dynamics, 

universality could be found. For instance, Barzel and Barabasi (2013) have constructed such a model 

based on two terms: one that develops the property according to the property itself, and second 

how the property in one node is affected by the properties of neighbouring nodes. 
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III. Herding behaviours in financial markets 

TƘŜ ǘŜǊƳ άŦƻƭƭƻǿƛƴƎ ǘƘŜ ƘŜǊŘέ ƛǎ ŀ ǇƻǇǳƭŀǊ ƛŘƛƻƳΣ ǎŀȅ ŦƻǊ ǘƘŜ ǇƻǇǳƭŀǊƛǘȅ ŀƴŘ ǇǳǊŎƘŀǎŜ ƻŦ ǇƻǇ ƳǳǎƛŎΦ 

But what is herding behaviour in terms of decisions that affect financial markets?  

According to Bikhchandani and Sharma (2000), herding can be defined as:  

ά!ƴ ƛƴŘƛǾƛŘǳŀƭ Ŏŀƴ ōŜ ǎŀƛŘ ǘƻ ƘŜǊŘ ƛŦ ǎƘŜ ǿƻǳƭŘ ƘŀǾŜ ƳŀŘŜ ŀƴ ƛƴǾŜǎǘƳŜƴǘ ǿƛǘƘƻǳǘ ƪƴƻǿƛƴƎ ƻǘƘŜǊ 

ƛƴǾŜǎǘƻǊǎΩ ŘŜŎƛǎƛƻƴǎΣ ōǳǘ ŘƻŜǎ ƴƻǘ ƳŀƪŜ ǘƘŀǘ ƛƴǾŜǎǘƳŜƴǘ ǿƘŜƴ ǎƘŜ ŦƛƴŘǎ ǘƘŀǘ ƻǘƘŜǊǎ ƘŀǾŜ ŘŜŎƛŘŜŘ ƴƻǘ 

ǘƻ Řƻ ǎƻέΦ  

Lƴ ǎƛƳǇƭŜ ǘŜǊƳǎΣ ƛǘΩǎ ŀōƻǳǘ ƛƳƛǘŀǘƛƴƎ ǘƘŜ ŀŎǘƛƻƴǎ of others: information is revealed when investors take 

actions, so replicating this action might lead to a profitable investment. This type of copying action 

can lead to information cascades, which have been defined by Hirshleifer and Teoh (2003) as:  

άhōǎervational learning in which the observation of others (their actions, payoffs, or even 

ŎƻƴǾŜǊǎŀǘƛƻƴύ ƛǎ ǎƻ ƛƴŦƻǊƳŀǘƛǾŜ ǘƘŀǘ ŀƴ ƛƴŘƛǾƛŘǳŀƭΩǎ ŀŎǘƛƻƴ ŘƻŜǎ ƴƻǘ ŘŜǇŜƴŘ ƻƴ Ƙƛǎ ƻǿƴ ǇǊƛǾŀǘŜ ǎƛƎƴŀƭέΦ  

Lƴ ǇǊŀŎǘƛŎŀƭ ǘŜǊƳǎΣ ǘƘƛǎ ŜǉǳŀǘŜǎ ǘƻ ǇŜƻǇƭŜ ŎƻǇȅƛƴƎ ƻǘƘŜǊΩǎ ōŜƘŀviour based on public information 

instead of using private information. A positive cascade can be defined as when open, public 

information leads to investment decisions. A negative cascade, therefore, when open, public 

information does not lead to investmeƴǘǎ όƻǊ ΨŘƻ ƴƻǘ ƛƴǾŜǎǘΩ ŘŜŎƛǎƛƻƴǎύ ƭŜŀŘǎ ǘƻ ǊŜǇŜŀǘŜŘ ΨŘƻ ƴƻ ƛƴǾŜǎǘΩ 

decisions.  

 

Basic herding models 

Simple information-based herding models (e.g. Banerjee (1992), Bikhchandani et al. (1992) and Welch 

(1992), assume that the same identical investment is available to all who would like to invest at the 

same price, discounting the effects of previous investments (such as price increases as stock becomes 

rarer for instance).  

In these models, investors have the same yes-no binary investment decision and have imperfect, but 

useful, information on which to base their decision, such as the historical prices of a certain stock. But 

this information is uncertified: investors can only see the actions of previous investors, not the private 

information or signal received that led to the investment decision. Herding can occur under these 

conditions, but it is considered of limited power because one new important bit of information could 

slow and then stop the herding behaviour. 

In models when the investors act sequentially in a predetermined order, the actions of the first few 

investors are critical in determining whethŜǊ ƘŜǊŘƛƴƎ ōŜƘŀǾƛƻǳǊ Ŏŀƴ ŀǊƛǎŜ ƻǊ ƴƻǘΦ [ŜǘΩǎ ǎŀȅ ǘǿƻ 

ƛƴǾŜǎǘƻǊǎ ǊŜŎŜƛǾŜ ƛƴŦƻǊƳŀǘƛƻƴ ŀƴŘ ŜŀŎƘ ŀŎǘǎ ǳǎƛƴƎ ŎƻƴŘƛǘƛƻƴŀƭ ǇǊƻōŀōƛƭƛǘƛŜǎ ǳƴŘŜǊ .ŀȅŜǎΩ [ŀǿ όǘƘŜ 

probability of an event occurring, based on prior knowledge of conditions related to the event).   
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It geǘǎ ƛƴǘŜǊŜǎǘƛƴƎ ǿƘŜƴ ŀ ǘƘƛǊŘ ƛƴǾŜǎǘƻǊ Ƨƻƛƴǎ ǘƘŜ ǎŎŜƴŜ όƛƴ ǘƘƛǎ ŜȄŀƳǇƭŜΣ ƭŜǘΩǎ ǎŀȅ ƻƴŜ ƛƴǾŜǎǘƻǊ ŘƛŘ ŀƴŘ 

ƻƴŜ ŘƛŘƴΩǘ ƛƴǾŜǎǘύΣ ǿƘƛŎƘ ƛǎ ǿƘŜǊŜ ŀƴ ƛƴŦƻǊƳŀǘƛƻƴ ŎŀǎŎŀŘŜ Ŏŀƴ ōŜƎƛƴΦ ¢ƘŜ ǘƘƛǊŘ ƛƴǾŜǎǘƻǊ ǿƛƭƭ Ŧƻƭƭƻǿ ǘƘŜ 

lead of the first tow investors if they do invest, assuming that the first two investors acted on good 

signals. Subsequent investors will also follow suit, regardless of their own private signals or 

information, again assuming the previous investments are based on sound knowledge, even though 

ƴƻ ƴŜǿ ΨǊŜŀƭΤΩ ƛƴŦƻǊƳŀǘƛƻƴ Ƙŀǎ ōŜŜƴ ǊŜŎŜƛǾŜŘ ς each subsequent investor is essence still copying the 

actions of the third investor: this is the positive cascade, and in general a positive cascade occurs if the 

number of previous participants who invest exceed the numbŜǊ ǿƘƻ ŘƻƴΩǘ ōȅ ǘǿƻ ƻǊ ƳƻǊŜΦ  

Similarly, a negative cascade can begin when the first two investors do not invest, and so he or she 

also does not invest. In this case, subsequent investors do not benefit because they have no new 

information to act upon, and this decision to follow the previous (in)actions is thus considered rational.  

 

In Bayesian terms, when public information outweighs private signals, the decision to cascade is 

considered justified. In these models, the addition of new and relevant information can, of course, 

interrupt the cascade as investors to reassess their beliefs based on new data.  

 

More complex herding models 

There are models that take account for investors having access to different information. Welch (1992) 

has modelled the consequences of information cascades on fixed-price IPO sales under such 

conditions, acting sequentially.  

In this model, investors gauge interest in an IPO by scrutinising the actions of previous investors. This 

scenario also leads to cascades when investors mimic earlier investment decisions and ignore private 

information. This model finds that that initial price is key to kicking off information cascades: too high 

or too low can lead to oversubscription (positive cascade) to shares or significant lack of investment 

(negative cascade). It follows that if IPO stock is underpriced, then a positive cascade results as 

investors flock in to pick up a bargain. By contrast, if stocks are overpriced then a negative cascade 

occurs as buying remains negligible.   

There are models with more realistic starting assumptions. For example, Chari and Kehoe (2004) have 

developed a model where cascades persist even when information is shared among investors. Herding 

behaviour is seen when three conditions are met: 1) continuous rather than one-off binary investment 

decisions; 2) assets are priced dynamically; 3) investors can invest when they choose, not in an order.  

The crowd and herd behaviour 

 

Economists have started incorporating investor psychology into finance over the last two decades to 
try and explain unexpected or unpredictable data regarding fundamental financial theories like the 
efficient-market hypothesis (EMH) or capital asset pricing model (CAPM) or Efficient Market 
Hypothesis.  

The field of behavioural finance assumes that, to some extent, all investors are irrational. This 
ŀǎǎǳƳǇǘƛƻƴ ŀōƻǳǘ ƛƴǾŜǎǘƻǊǎΩ ƛǊǊŀǘƛƻƴŀƭƛǘȅ Ŏŀƴ ŀŎŎƻǳƴǘ ŦƻǊ ŎŜǊǘŀƛƴ ŦƛƴŀƴŎƛŀƭ ƻōǎŜǊǾŀǘƛƻƴǎΣ ǎǳŎƘ ŀǎ 
overreactions to information, seasonal stock price effects and herding amongst investors.  
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The reasons for rational behaviour have been detailed by Barberis and Thaler (2003), who give a two 
definitions of investor rationality: 1), agents update their beliefs correctly when they receive new 
ƛƴŦƻǊƳŀǘƛƻƴΣ ƛƴ ǘƘŜ ƳŀƴƴŜǊ ŘŜǎŎǊƛōŜŘ ōȅ .ŀȅŜǎΩ ǘƘŜƻǊŜƳΤ нύ ƎƛǾŜƴ ǘƘŜƛǊ ōŜƭƛŜŦǎΣ ŀƎŜƴǘǎ ƳŀƪŜ ŎƘƻƛŎŜǎ 
ǘƘŀǘ ŀǊŜ ƴƻǊƳŀǘƛǾŜƭȅ ŀŎŎŜǇǘŀōƭŜΦ όbƻǘŀōƭȅΣ ǘƘŜ ǳǎŜ ƻŦ .ŀȅŜǎΩ ǘƘŜƻǊŜƳ όǿƘƛŎƘ ƛǎ ǘƘŜ ǇǊƻōŀōƛƭƛǘȅ ƻŦ ŀƴ 
event based on prior knowledge of related conditions). in providing up-to-date information on 
ƛƴǾŜǎǘƻǊǎΩ ōŜƭƛŜŦǎ ƛǎ ŎŜƴǘǊŀƭ ƛƴ ƻǘƘŜǊ ƘŜǊŘƛƴƎ ƳƻŘŜƭǎΣ ǎǳŎƘ ŀǎ ǘƘƻǎŜ ƻŦ {ŎƘŀǊŦǎǘŜƛƴ ŀƴŘ Stein (1990), 
Banerjee (1992), Bikhchandani et al. (1992), Welch (1992). and. 

 

 

Alternative crowds/herding models 

Others think that people are generally bad at determining probabilities accurately, as detailed by 
Fischhoff et al. (1977), for example. They report that overconfidence can lead people to predict an 
occurrence with 100% certainty when the actual probability is, say, only 80%.  

 

Similarly, Barber and Odean (1999) say investor overconfidence causes over-trading and can lead to 
significant losses, as can over- and under-reaction to good and bad financial news as Barbaris et al. 
(1998), Daniel et al. (1998) have explained.  

Overconfidence can also affect not just individual investors, but the economy as a whole. Lo (2002) 
suggests there is a correlation between optimism/pessimism in wider society and financial market 
conditions; specifically that a feeling of optimism in society translates to more optimistic investors, 
and hence more optimistic but riskier investments due also to the underestimation of relevant risks, 
as highlighted by Fischhoff et al. (1977) and Barber and Odean (1999). 

Crowds and information cascades 

LƴŦƻǊƳŀǘƛƻƴ Ŏŀƴ ƳǳƭǘƛǇƭȅ ǘƘǊƻǳƎƘ ƎǊƻǳǇǎ ƻŦ ǇŜƻǇƭŜ ƛƴ ŀ ǇƘŜƴƻƳŜƴƻƴ ƪƴƻǿƴ ŀǎ ΨƛƴŦƻǊƳŀǘƛƻƴ ŎŀǎŎŀŘŜǎΩΦ 
Bernardo and Welch (2001) discuss how the actions of a clique of overconfident investors can change 
the decisions and outcomes of the actions of a larger group of investors. When too much emphasis is 
put on private information, the total amount of information aggregation amongst the group increases. 
This is due to investors placing less emphasis on the actions of the herd and an overreliance on their 
ǇǊƛǾŀǘŜ ƛƴŦƻǊƳŀǘƛƻƴΥ ǘƘŜ ǊŜǎǳƭǘ ƛǎ ǘƘŀǘ ǘƘŜȅ ŜƴŘ ǳǇ ōǊƻŀŘŎŀǎǘƛƴƎ ǘƘƛǎ ΨǇǊƛǾŀǘŜΩ ƛƴŦƻǊƳŀǘƛƻƴ ǘƻ ǘƘŜ ǊŜǎǘ 
of the group, who then make irrational choices. Anderson and Holt (1996) have demonstrated these 
information cascades in a laboratory setting.  

 

Another phenomenon is also at play here: a person forms an opinion and sticks to their guns for too 
ƭƻƴƎΣ ƴŀƳŜŘ ΨōŜƭƛŜŦ ǇŜǊǎŜǾŜǊŀƴŎŜΩ ōȅ Lord et al. (1979). ¢ƘŜȅ ƴƻǘŜ ǘƘŀǘ ǇŜƻǇƭŜ ŘƻƴΩǘ ǿŀƴǘ ǘƻ ŦƛƴŘ ƻǊ 
see evidence that contradicts their opinion ς who wants to be wrong? ς and when presented with 
evidence contrary to their beliefs, it is seen with scepticism. The result is that investors involved in a 
ǇƻǎƛǘƛǾŜ ƛƴŦƻǊƳŀǘƛƻƴ ŎŀǎŎŀŘŜ ƘƻƭŘ ƻƴǘƻ ǘƘŜ ǘƘƛƴƪƛƴƎ ǘƘŀǘ ǘƘŜ ǇǊŜǾƛƻǳǎ ƛƴǾŜǎǘƻǊǎΩ ŘŜŎƛǎƛƻƴ ǘƻ ƛƴǾŜǎǘ 
suggests that they should do the same and the positive cascade continues.  

 

IV.  Model description  

 
Cascade dynamics has often been described by ordinary differential equations, that assume that the 
probability for spreading is uniform ( H. W. Hethcote ,2000), However, social networks are not 
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uniformly mixed but are highly heterogeneous and have scale-free properties. K. Ebel (2002), M. 
Faloutsos (1999). 
 
 
we created a  network of emotional, semi-rational, and rational investors. Were the emotions of 
individual nodes is affected by the performance of the investment, as well as the emotion of the 
neighbouring investors. The latter is the mechanism through which we define emotional cascades. 
we adopt the susceptible-infected susceptible (SIS) model. The SIS model is one of the simplest 
models in epidemiology and is also known as the contact process model to model emotional. 
 
In our network, three group of investors were presented  

1) Rational investor   2) Emotional investor   3) Semi ς emotional investor   

The three group of investors have different characteristics, for the rational investors, we assigned 
zero emotionality-i.e emotion does not play any role in their trading, while the other two groups ς
emotional investors and semi-emotional were assigned emotionality from random from Unif (-1,1) 
distribution. See figure 4 
 
 
In our network three group of investors were presented, these three group of investors have different 

characteristics, for the rational investors we assigned zero emotionality-i.e emotion does not play any 

role in their trading, while the other two groups -emotional investors and semi-emotional investors -

we assigned emotionality from a random Unif (-1,1) distribution. See figure 4. 

the emotional investor buying and selling is purely based on his /her emotion toward the stock i.e. if 

it is positive they will buy if it is negative they will short sell, while the Rational Investor buy the stock 

if it is value is under a perceived fundamental value and short sell the stock if it is above a perceived 

fundamental value. See figure 5, the Semi-emotional investor trading rule is a combination of the two. 

 

 

Figure 4 show the distribution of emotion assigned to the semi-emotional investors and fully 

emotional investors. Where 1 represents positive /love and -1 represent negative /hate, Zero was the 

value assigned for the rational investors. 
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Figure 5 show the rational investor trading rule for the uptrend price path. Were the fundamental 

value was assigned as a 0.65*(Peak value) to ensure that there will be a period where the stock price 

is above and below the fundamental value.  

 

 
rational Investors 

 
Semi-emotional Investors 

 
emotional Investors 

     Figure 6 show the wealth change for the three group on investors for the price path at figure 5 

 

 

 

 

 

 

 

 

 

 

 

 

 



10 

 

Network Emotional cascade 

Two mechanisms of emotional cascade were introduced, first, is stock price driven second is a network 

induced emotional cascade. 

In their first stages of the process, we assigned randomly love and hate emotion towards the stock, In 

the latter stages, reality sets in and investors question their decisions and euphoric craze towards the 

stocks if the stock price moves against their initial beliefs, Taffler and Tuckett (2005) theorise that 

emotional investors let a range of unconscious and infantile emotions dictate their actions regarding 

dot.com stocks, rather than knowledge of company fundamental or future growth potential. 

 

For the network emotional cascade, we implemented the susceptible-infected- 
susceptible (SIS) model. The SIS model is one of the simplest models in epidemiology and is also 
known as the contact process model. See figure 7 

 

Figure 7, Network induced emotional cascade 

 
In our model, a population with N Investors is categorised into two emotional compartments: 
Positive (P) and Negative (N). The emotion is transmitted only when a susceptible Investors is in 
contact with an anther investor. 
 In the case of a fully mixed population, the model is represented by two stochastic events: 
- Stock price level change-induced emotional Cascade 

Ὁάὸ ρ Ὁάὸ  z                                                    ΧΦΦ  όмύ 

-Network induced emotional Cascade  

Ὁάὸ ρ Ὁάὸ ρ Ὁάὸ  zz ὔὩὭ ȿ   ɻ ÒÁÎÄ ÕÎÉÆπȟρ          ΧΧ όнύ 
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Where  

ʲ Ґ 9Ƴƻǘƛƻƴŀƭ ǇǊƛŎŜ ƘƛǎǘƻǊȅ ŦŀŎǘƻǊ 

ʰҐ 9Ƴƻǘƛƻƴŀƭ ǇǊƻōŀōƛƭƛǘȅ ƻŦ ŀŦŦŜŎǘƛƴƎ ƴŜƛƎƘōƻǳǊ 

ʴ Ґ 9Ƴƻǘƛƻƴŀƭ ǇǊƻǇŀƎŀǘƛƻƴ 

-ÁØ = x period moving average  

0Ô= price of stock at time (t) 

%ÍÔ = Investor emotion at time (t) 

.ÅÉ = network neighbours (i) emotions  

 

So the change in wealth of each individual investors is given by the equation 1 

ὅὬὥὲὫὩ Ὥὲ ύὩὥὰὸὬ ίὫὲ Ὢὺὸ ὖὸ ᶻρ ▄□▫◄░▫▪╪■░◄◐ρzπ Ὁάὸᶻ

▄□▫◄░▫▪╪■░◄◐ρzπz  ὖὸ                                                                                                       Χόоύ 

 

Where emotionality in equation (1) is equal to  

Rational Investors = zero 

Emotional Investors = 1 

Semi-emotional Investors= random Uniform distribution (0,1) 

 

in eq 3 above we see that for the case of rational investor the change in wealth is function of only the 

price change and his/ her perceived fundamental value, but for the case of emotional investor it is 

their emotion at time (t), while it is the combination of the two for the Semi-emotional investor. 
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Network herding  
 
We include a network preferential attachment to model herding Barabási, A.-L.; R. Albert (1999), see 

figure 8 

  

 
 

  

 

 
Figure 8 show  wealth preferential attachment  network herding model Barabási, A.-L.; R. Albert 
(1999) 
 
Most ǇǊŜŦŜǊŜƴǘƛŀƭ ŀǘǘŀŎƘƳŜƴǘ ƳƻŘŜƭǎ ǎŜŜƪ ǘƻ ǊŜǿƛǊŜ ǘƻ ΨǊƛŎƘΩ ƴƻŘŜǎΦ 
 

Å So in fig 8.1 LƴǾŜǎǘƻǊ о ƛǎ ǘƘŜ ΨǊƛŎƘΩ ƴƻŘŜΦ 
Å fig 8.2  Investor 6 breaks its tie with Investor 4 
Å And reattached to Investor 3 

Å The resulting network would look like fig 8.3 
Å ¢Ƙƛǎ ŎƻƴŎŜǇǘ ǘǊƛŜǎ ǘƻ ƳƛƳƛŎ ǘƘŜ ŎƻƴŎŜǇǘ ƻŦ ΨŦƛǘƴŜǎǎΩ ƛƴ ƎǊƻǿƛƴƎ ƴŜǘǿƻǊƪǎΦ Lǘ ƛǎ ƴƻǘ perfect but 

can produce a power-law distribution. 

Fig 8.1 

1.1 
Fig 8.2 

Fig 8.3 Fig 8.4 

Fig 8.5 Fig 8.6 

Fig 8.7 

Fig 8.8 
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Å We propose a fitness measure that is not based on its topology, understanding that topology 
can change drastically on performance within the market. In fig 1.4 Investor 2 become the 
best performing nodes. 

Å The network reattach itself to a highly performing Investor (fig 8.5, 8.6) 
Å Making the performing investor more central fig (8.7, 8.8) 

 
 
In our model, we created A network is created that most accurately describes a real network. The 
nodes represent investors, and the edges (the links) represent some social relationship between 
them. 

1. The performance of each of the investors is simulated. 
2. The probability of rewiring a given connection is a flat ὴ  for all edges (once). 

3. An edge will be rewired to a given node with the probability: ὴ
В

 

4. If no suitable node is found, no rewiring occurs. 
 
 

Ὧ

ὸ
Ὧὸ ρ Ὧὸ ήὯὸ

ὡὩὥὰὸὬὸ

В ὡὩὥὰὸὬὸ
ήὯὸ 

Ὧὸ ρ Ὧὸ ήὯὸ
ὡὩὥὰὸὬὸ

В ὡὩὥὰὸὬὸ
ήὯὸ 

Ὧὸ ρ

Ὧὸ
ρ ήϽ

В Ὧὸ

Ὧὸ
Ͻ
ὡὩὥὰὸὬὸ

В ὡὩὥὰὸὬὸ
ή 

If: 
ὔόάὦὩὶ έὪ ὩὨὫὩί

Ὧὸ
Ͻ
ὡὩὥὰὸὬὸ

В ὡὩὥὰὸὬὸ
ρ 

The number of nodes will increase for node i. 
Overall dynamics of the topology will depend on the performance of the nodes and the proportion 
of edges a node has. See figure 9. 
 
 

 

          Figure 9   Network Herding Visualisation were nodes represents market participants and arrows 

represent ǇŀǊǘƛŎƛǇŀƴǘΩǎ links 
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V. Simulation results  
A network of investors were given four exogenous price paths as see in figure 10, were Investors 

wealth was changing over each time steps according to eq. 3.  LƴǾŜǎǘƻǊΩǎ emotionality was observed 

and visualised ςsee appendix 1 -using different network setting. The model parameters are shown in 

table 1. 

  

 

 

 

 

Figure (10) show four price patterns, n shaped, u shaped, uptrend and downtrend  

 

. Size of network (N) 

Í Minimum number of connections 

ÎÔ  Number of time steps 

ʲ Ґ 9Ƴƻǘƛƻƴŀƭ ǇǊƛŎŜ ƘƛǎǘƻǊȅ ŦŀŎǘƻǊ 

ʰҐ 9Ƴƻǘƛƻƴŀƭ ǇǊƻōŀōƛƭƛǘȅ ƻŦ ŀŦŦŜŎǘƛƴƎ the neighbour 

ʴ Ґ 9Ƴƻǘƛƻƴŀƭ ǇǊƻǇŀƎŀǘƛƻƴ 

-ÁØ = x period moving average 

0Ô= price of stock at time (t) 

%ÍÔ = Investor emotion at time (t) 

.ÅÉ = network neighbours (i) emotions 

Ð2)Ϸ  Percentage of rational Investors 

Ð%)Ϸ  Percentage of emotional Investors 

Ð3%Ϸ  Percentage of Semi-emotional Investors 
Probability of rewiring 

Table 1 Model input Parameters  
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The simulation was conducted and investors emotion were observed over 100-time steps ςwe conduct 

a network parameter sweep and observed emotionality cascade sensitivity as we alter the value of 

the parameter.   Three parameters were of interest   

1- Time to full cascade which is the number of time steps it take for the all the network 

participants emotionality to converge to Positive (1) or Negative (-1). 

2- The density of the cascade refers to a measure of how much of ƛƴǾŜǎǘƻǊΩǎ emotionality is 

within a same amount of space .i.e variance of participant emotion.  

3- Cascade parameter value referee to the smallest value of the interested parameter was full 

cascade occur. 

 

 

The results are presented in table 2-4  

 

Cascade Emotion 
parameters 

Trend Path Cascade 
parameter value 

Time step to 
full cascade 

The density of 
cascade (ranked 1-

12) where 12 is the 
highest density. 

Alpha (Emotional probability 
of affecting neighbour) 

n shape (Fig 1, 

Appendix 1) 
0.3   (ȟ πȢσυ 30 8 

 U shape (Fig 3, 

Appendix 1) 
0.4  (ȟ πȢσυ 40 2 

 upward(Fig 5, 

Appendix 1) 
0.7   (ȟ πȢσυ 30 10 

 downward(Fig 7, 

Appendix 1) 
0.3   (ȟ πȢσυ 30 9 

Beta (Emotional price history 
factor) 

n shape(Fig 9, 

Appendix 1) 
0.3   (ȟ πȢσυ 60 2 

 U shape(Fig 10, 

Appendix 1) 
0.2   (ȟ πȢσυ 50 5 

 upward(Fig 11, 

Appendix 1) 
 0.7    (ȟ πȢσυ 80 3 

 downward(Fig 

12, Appendix 1) 
 0.3    (ȟ πȢσυ 30 6 

Gamma (Emotional 
propagation) 

n shape(Fig 13, 

Appendix 1) 
  0.2     (ȟ πȢσυ 30 12 

 U shape(Fig 14, 

Appendix 1) 
 0.01     (ȟ πȢσυ 30 11 

 upward(Fig 15, 

Appendix 1) 
 0.5    (ȟ πȢσυ 80 4 

 downward(Fig 

16, Appendix 1) 
 0.3     (ȟ πȢσυ 70 7 

Table 2 Simulation were conducted and emotion was observed over 100-time steps ς during the 

simulation we fixed all the network structure parameters i.e. Network size to 50, and a minimum 

number of connections to 3.   Using equal split between fundamental rational trader, emotional and 

semi-emotional trader i.e 1/3. 
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Network Structure Trend Path Cascade 

parameter 

value 

Time step to 

full cascade 

The density of 

cascade (ranked 1-

8) where 8 is the best 

Density. 

Size of network n shape(Fig 23, 

Appendix 1) 
10 άέ σ  10 8 

 U shape(Fig 24, 

Appendix 1) 
10 άέ σ  20 7 

 upward(Fig 25, 

Appendix 1) 
20 άέ σ  15 5 

 downward(Fig 

26, Appendix 1) 
10 άέ σ  20 6 

Minimum number of connections n shape(Fig 18, 

Appendix 1) 
3 ὔ ρππ 30 1 

 U shape(Fig 19, 

Appendix 1) 
3 ὔ ρππ 20 3 

 upward(Fig 20, 

Appendix 1) 
3 ὔ ρππ 40 2 

 downward(Fig 

21, Appendix 1) 
2 ὔ ρππ 70 4 

Table 3 Simulation were conducted and emotion was observed over 100-time steps ï during the 

simulation we fixed all the cascade emotion parameters (ȟȟ to 0.35 , Using equal split between 

fundamental rational trader, emotional and semi-emotional trader i.e 1/3. 

 

 

Network 

Property 

Trend Path Cascade 

parameter 

value 

Time step to full 

cascade 

The density of 

cascade (ranked 1-

12) where 12 is the 

highest Density. 
Percentage of rational 
Investors 

n shape(Fig 35, Appendix 1) 50%-the rest is 

emotional 

75 2 

 U shape(Fig 36, Appendix 1) 50%%-the rest 

is emotional 
45 4 

 Upward(Fig 37, Appendix 1) 50%%-the rest 

is emotional 
30 1 

 Downward(Fig 38, Appendix 1) 50%%-the rest 

is emotional 
25 4 

Percentage of 
emotional Investors 

n shape(Fig 27, Appendix 1) 100% 10 12 

 U shape(Fig 28, Appendix 1) 100% 15 10 
 Upward(Fig 29, Appendix 1) 100% 15 9 
 Downward(Fig 30, Appendix 1) 100% 20 11 
Percentage of Semi-
emotional Investors 

n shape(Fig 31, Appendix 1) 50%%-the rest 

is emotional 
No full cascade 5 

 U shape(Fig 32, Appendix 1) 50%%-the rest 

is emotional 
25 6 

 Upward(Fig 33, Appendix 1) 50%%-the rest 

is emotional 
100 7 

 Downward(Fig 34, Appendix 1) 50%%-the rest 

is emotional 
80 8 

 

Table 4  Simulation were conducted and emotion was observed over 100-time steps ï during the 

simulation we fixed all the cascade emotion parameters (ȟȟ to 0.35, we also fixed all the network 

structure parameters i.e. Network size  to 50, and minimum number of connections to 3 
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VI.  Discussion and conclusion 
 

We have developed network emotional cascade and herding model using scale-free networks and showed 
how the cascade and herding developed and evolved over four price paths. In our model, three independent 
parameters dictate the emotional cascade (Alpha, Beta, Gamma) these three parameters contribute positively 
and increase the likelihood of the emotional cascade to occur, and as these parameters increasing in value the 
density of the cascade increase ς i.e reduce the variance of emotion cascade. 
 
Our simulation concluded that as the %number of the market participant, which is  classified as emotional 
increases in value  this increase the  likelihood of emotional cascade, and as the number of the market 
participant decrease -i.e the N size of the network decrease -this have also positive inducing effect on the 
emotional cascade, regarding the minimum number of connection the more connections the more likelihood 
that emotional cascade will occur. 
 
Finally, regarding trading performance/wealth, the result was a mixed, for the declining trend and the upward 
trend emotional investors outperformed the other two groups ( rational fundament and semi-emotional 
investors)  but the story is the opposite for the U and n shape trends, this is in line with our expectation 
because as the market is trending emotional investor will herd toward buying or selling stock and profit is 
generated due to the continuity of the trend .  
figure 11 show system diagram of the interaction of all the element of our model notice Emotional cascade 
and Herding interaction within one system. 
 

 
Figure 11 system dynamic model diagram of emotional and herding cascade -where Blue line show positive 

feedback, red line negative feedback, green is  natural  
Further work 
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1) /ŀƭƛōǊŀǘŜŘ ƻƴ ŬƴŀƴŎƛŀƭ ƳŀǊƪŜǘ ŘŀǘŀΣ and try to replicate the stylized ŦŀŎǘǎ ƻŦ ŬƴŀƴŎƛŀƭ ƳŀǊƪŜǘǎ ǎǳŎƘ ŀǎ 
volatility clustering and fat tails in the distribution of returns.  This can be done by applying method of 
simulated moments (MSM)- is a generic method for estimating parameters in statistical models-. 

2) Introduce exogenous time series to the model to replicate real market trading Scenarios.  
3)  Investigate different model parameters, for example taking the recent performance of agents into 

account during the Herding/Emotional cascade mechanis. 
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Appendix 
 

Parameter Testing 

ʰҐ 9Ƴƻǘƛƻƴŀƭ ǇǊƻōŀōƛƭƛǘȅ ƻŦ ŀŦŦŜŎǘƛƴƎ the neighbour 

ʲ Ґ 9Ƴƻǘƛƻƴŀƭ ǇǊƛŎŜ history factor 

ʴ Ґ 9Ƴƻǘƛƻƴŀƭ ǇǊƻǇŀƎŀǘƛƻƴ 
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Figure (1)  shows emotional-investors emotions changes with Ŭ for the n shape price path shown in 

figure (2 )  were the other Cascade parameters ɓ and ɔ were fixed at 0.35 , N=50 and m0= 3 

 

♪ Ȣ 

 

♪ Ȣ 

 

♪ Ȣ 

 

♪  

 


