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Abstract:

Emotional Finance introduces the notion that financial markets may be driven by thexigtence

of fully-rational and emotional investors, driven by phantasy. The analysis of emotional finance is
informed with reference to a Freudian psychoanalytical in@work. In this paper, we add to the
existing information cascade and herding research by developing an emotional finance model that
examines the effects of phantasy investors on the decisions of rational investors under dynamic
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time based on how they perform. We propose an elementary agéaised asset pricing model
consisting of three trader types; fundamental traders, emotional traders, and semotional
traders. The model comprises two features: 1) an emotional herdimgchanism based on
susceptibleinfected susceptiblgSIS) model 2Ayealth price herdingbased on wealth preferential
attachment Combining analytical andimulationmethods, the interacton between these elements

is studied in a 4gohase plane of the price movement: 1) prices resembling a bull market 2) prices
resembling a bear market 3Y-shapedpricing trends, and 4) n shaped pricing trends. Finally, we
compare our approach with a tradibnal information cascade/herding model incorporating
phantasy investors.

l. Introduction

The EMH states that investors are rational and trade without any emotional input, so prices reflect all
available information at all times. An alternate view is prasdrby Shefrin (1999), who introduces
human emotions back into the equation. Shefrin writes that trading is not a solely calculating
endeavour, but is subject to emotional impulses, such as greed, fear and other basic (and complex)
human emotions.

It can be argued that all human decisions are emotional, not rational, in nature and there are many
examples that violate EMH theory, from disappointment aversion (Gul, 1991) to regret theory (Bell,
1982) and prospect theory (Kahneman and Tversky, 1974 aesky and Kahneman, 199Zaffler

and Tuckett (2005) have started a major paradigm shift with the development of emotional finance,
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unconscious and infaidé emotions thataffect investor decisiongFairchild, 2009 Emotional finance

theory argues that entirenarkets as well as individual stoclken be analysed with the subconscious
emotions that result from the belief iphantasticobjects (Tuckett, 201). Market euphoria and a
subsequent crash can be viewed in terms of the emotions associatedphathtasticobjects. The
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to represent the phantasies of thgeople holding then{(Taffler & Tuckett, 2005Emotional finance



has also been applied to the rapid growth and dramatic decline of the hedge fund industdge
funds, it is argued, have becorplantasticobjects for people, mesmerized by stellar gaiasd the
people that run them are almost deified that is, until reality sets in and mounting losses and
liquidation transform the euphoria into anger and blaifieshraghi & Taffler, 20Q9)

Therefore, investor irrationalitg driven by human emotiong cannot be overlooked when financial
decisions are made. To effectively model herding behaviour, it is of critical importance to give
O2yaARSNIoO6fS ¢SAIKGAYD (261 NRa FFOG2NAR OGKIFG Fff2

The development of communication techogly and internet increased connectivity among
Investors, were information and sentiment can transfer among market participanmicsh insome
incidents canlead to herding and asset price bubble, these sentiments, rumours, and opinions
spread over networks of contacts between investors and market participants. Understanding the
intrinsic mechanism behind Herding and emotional cascade in networks is an anptask.

In this paper, we adopt theusceptibleinfected susceptibl¢SIS) model. The SIS model is one of the
simplest models in epidemiology and is also known as the contact process model to model
emotional cascade and wese networkpreferentialattachment tomodel herding.

This paper is structured such that in Section Il (Background Network Theory) the reader in introduced
to i) Network topology, centrality and network dynamic, Section Il introduce some of the literature
on herding and motional cascade. Section IMroduce our model of network herding and emotional
cascade, andinally, in section V and/|, we present the result of the simulation with discussion and
conclusions.

Il. The Topology and dynamics of networks

Networks, consisting ofatles and edges connecting nodes, have been used to study many different
problems and systems ranging from the famous Konigsburg bpdgj@em to elementary school
OKAfT RNBY Q& T NA Snferat Bnkl the vibNuRvidedh Newinan2003K Setworkshave

seen a resurgence of interest due to two main factors: firstly, the desgoof the scaldree property
(Barabasi Alber 199%as far-reachingimplicationsand has provided a means of understanding
fundamental network growth. Furthermore, the discoydias enabled simulated networks with more
realistic topologies to bereated Albert Barabasi 200Q2It has since become a staple to compare and
contrast the statistical mechanics of randomly connected networks to those with the-fseale
property. Insgght into many different situationsasbeen gained from such approaches [ref]. Secondly,
the ever increasing amount of computational power has allowed large networks to be analysed, and
for the dynamics of such networks to be simulated.

A wellstudied aspct of networks is the degree distribution, where the degree of a node is the number

of edges connecting the node. In random networks, the distribution approaches a Poisson distribution,

with the peak occurring at about the mean network degree. In strale networks however, the

degree distribution is best described by Q ,wherekA & (G KS RS3INBSsE FyR ¢ Aa
and 3. It is from this distribution that the scdiee property draws its name, as this distribution does

not change regardlesof the size of the networlB@rabasi Albert 2002



However, whilst this is an interesting finding, the most significant finding came from successfully
building such topologies. Namely, it is argued that by virtue of being able to recreate such tepologi
that we are able to draw greater insight into how it is that networks are formed. This is obviously of
interest when discussing herding in the market. Indeed, the Bara\hasrt algorithm for growing a
scalefree network is based on preferential attaclent. Quite simply put, the higher the number of
connections a node has, the higher the probability is that a new node will connect to the highly
connected node. This produces a sefae network with exponents betweet? to -3 in the degree
distribution. Whilst certain statistical aspects do not match the Baradlsért network to real life
examples (e.g. local clustering, modularity), it has proven a resilient approach, despite many different
approaches having been tried in the past decBignconi and Barabasi (2001); Mendes, G. & da Silva
(2009)

Whilst being able to understand investor networks is of utmost impartarthis would require
something that is not widely available: a real investor network dataset. Furthermore, all network
analyses suffer from the boundary issues that inevitably occur where a cutoff point is necessary, which
all social networks are subjetd. Thus, in the absence ofstandardsed dataset that is validated as
being an exemplary representation of all investor networks, there is little value in trying to determine
what network evolution best mimics such a network. That is not to say thahetevorks should not

be investigated, but rather that networks, socratworks in particular, vary greatly depending on
what resources are available to construct the network in the first place. It is important to be aware of
the boundary limitations, ashin cases where the objective of the research is to provide generalizable
findings, a simple, consistent, and simulated network suits these purposes well.

It is thus considered more pertinent to investigate a fundamental concept of topological evolution
than it is to perfectly replicate a specific network topology. It is by understanding how such a concept
may be suited for explaining phenomena such as herding. Either the findings will be what would be
expected, or an emergent effect will arise. Such ayeet effects in networks provide a lot of insight

into how a real system behaves.

As stated, the objective of this paper is to investigate herding. The hypothesis drawn here is that, as
with the BarabasAlbert model, investor influence networks are deténed by a fitness measure.
Logic would dictate that in investor influence networks, that fithess measure would be determined by
outcome (e.g. if someone unknown to the investors were to consistently show that they are able to
predict the market outcomef would be expected that investors, particularly emotional ones, would
GNEB G2 O2 Lidehavitir). A clealSieqdies iy éh aventwould cause a fatail, whereas
homogeneous performance in the market would cause a random network to occur.

However, it is not just the topology that is of interest, there igm@wingbody of literature on the
network dynamics. That is to say, how a property propagates through a network. The most famous of
such studies come from epidemiology, where Susceptififiected-Recovered (SIR) or Susceptible
Infected -Susceptible models have been siesl in many different contextBarthélémy M, Barrat
(2004 and Barthélémy M, Barra2005). Interestingly, one would expect that the dynamic measures
are very much determined by the topology (schlkee vs random), but a seminal pageund that the
dynamics behave very differently depending on theentying method of propagatioBarzel Barabasi
(2013

If we thus accept that topology is affected by performance in the market, and we consider that
performance in the market is affectdry emotion (for emotional investors), which is propagated as a
property through a network. How then do these two interact?



Network evolution and network dynamics

The evolution ohetworksstudied irdepth in Albert and Barabasi (2002), can be focused to three
factors: 1) preferential attachment of nodes; 2) how networks grow; 3) external and internal
connections between nodes.

The first two factors are necessary for sefibe networks wii K SE L2 y Sy i & HX! o ® Cd:
fithess can be considered a form of preferential attachment, and Bianconi and Barabasi (2001)

propose a fitness parameter that where growth produces a sfrake graph with a logarithmic

correction.

As in biology where dails of structure reveal the functions of a system, the topology of a network
and analysis of it provides a huge amount of information about a system. Researchers have
attempted to model cascading of properties within networks (Buldyrev 2001, Motte 2@3Rovec
2006, 2000) in the macroscopic (whole network) and microscopic (individual nodes) scale to
ascertain how information flows. Many attempts have been made to model microscopic
interactions, but it is acknowledged that in network dynamics there @thb propagation of a
certain property that may or may netffects overall the topology of the system.

Borrowed from epidemiology and how infections spread, some researchers sutydg2001),

Pastor(2001), Barrat (2004) and Volz (2068ye investigeed propagating properties using the
susceptibleinfected-susceptible (SIS) model but applied to artificial networks ekample Pastor

Satorras and Vespignani (2001) simulated a SIS epidemic spreading (via emails, file transfers) in

internet systems preiously identified to be scalzee (Albert and Barabasi, 1999). Research

(Kephart, 1994, Maia, 200%n random graphs has shown that above an epidemic rate critical
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This model reveals why epidemics take so long to die out: most viruses are eradicated within two

months, but many viruses are still propagating disease many monthsclatd¢ S Of I 3aA O Wf 2 y 3
the power law.

De Aguiar and Baram (2005) take the analis further by modelling the effect of perturbations on
the networks. Analysing spectral density, they have shown that the density of states contains
information about network topology, and also regarding how external perturbations affect network
dynamics

There is not always agreement among researchers looking for common properties across various
networks. But some argue that by utilising similar frameworks that mimic network dynamics,
universality could be found. For instan@grzel and Barabasi (2018)ve constructed such a model
based on two terms: one that develops the property according to the property itself, and second
how the property in one node is affected by the properties of neighbouring nodes.



Il. Herding behaviours in financial markets
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But what is herding behaviour in terms of decisions that affect financial markets?

According taBikhchandani and Sharma (200B¢rding can be defined as:

G!'y AYRAGARdAzZrE OlFy o06S arAR G2 KSNR AF &aKS g2dz F
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actions, so replicating this action might lead to a profitable investment. This type of copying action

can lead to information cascades, which have been defindditshleifer and Teoh (2003}:

a h éndational learning in which the observation of others (their actions, payoffs, or even
O2y@SNEIFIGA2Y0 A& a2 AYyF2NXNIGAGS GGKFG Yy AYRAGARC
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instead of using private information. A positive cascade carddékned as when open, public

information leads to investment decisions. A negative cascade, therefore, when open, public
information does notleadtoinvestryel & 6 2 NJ WR2 y20 Ay @SaiQ RSOAAAZ2Y:
decisions.

Basic herding models

Simple informatiorbased herding models (e Banerjee (1998 Bikhchandani et al. (1992nhdWelch
(1992) assume that the same identical investment is available to all who would like to invest at the
same price, discounting the effects of previous inmestts (such as price increases as stock becomes
rarer for instance).

In these models, investors have the same-gesdinary investment decision and have imperfect, but
useful, information on which to base their decision, such as the historical pricezediin stock. But

this information is uncertified: investors can only see the actions of preunestors not the private
information or signal received that led to the investment decision. Herding can occur under these
conditions, but it is considedeof limited power because one new important bit of information could
slow and then stop the herding behaviour.

In models when the investors act sequentially ipradeterminedorder, the actions of the first few
investors are critical in determining wheé8iNJ KSNRAY 3 0 SKIF @A 2dzNJ OF y | NR 2
Ay@Sait2NaE NBOSAGS AYyTF2NXIFGA2Y YR SIHOK FOGa dzaa
probability of an event occurring, based on prior knowledge of conditions related to the event).
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lead of the first tow investors if they do investssuming that the first two investors acted on good

signals. Subsequent investors will also follow suit, regardless of their own private signals or
information, again assuming the previous investments are based on sound knowledge, even though

Y2 YSHEQUWNEBFE2 NXI (A2 yedch subsenGebt yhvedtd iS Esaedcs &ill copying the

actions of the third investor: this is the positive cascade, and in general a positive cascade occurs if the
number of previous participants who invest exceedthe n@mMh) ¢ K2 R2y Qi o6& (62 2 NJ

Similarly, a negative cascade can begin when the first two investors do not invest, and so he or she
also does not invest. In thisase subsequent investors do not benefit because they have no new
information to act upon, and this decision to follow the previous (in)actions is thus considered rational.

In Bayesian terms, when public information outweighs private signals, the decisioastade is
considered justified. In these models, the addition of new and relevant informaionof course,
interrupt the cascade as investors to reassess their beliefs based on new data.

More complex herding models

There are models that take account investors having access to different informatidvielch (1992)
has modelled the consequences of information cascades on-fiked IPO sales under such
conditions, acting sequentially.

In this model, investors gauge interest in an IPO by scrutintkim actions of previous investors. This
scenario also leads to cascades when investors mimic earlier investment decisions and ignore private
information. This model finds that that initial price is key to kicking off information cascades: too high
or too low can lead tmversubscription(positive cascade) to shares or significant lack of investment
(negative cascade). It follows that if IPO ste&kinderpriced, then a positive cascade results as
investors flock in to pick up a bargain. By contrast,datlss are overpriced then a negative cascade
occurs as buying remains negligible.

There are models with more realistic starting assumptions. For exa@péj and Kehoe (200Bave
developed a model where cascades persist even when information is straialy investors. Herding
behaviour is seen when three conditions are met: 1) continuous rather thasofifgnary investment
decisions; 2) assets are priced dynamically; 3) investors can invest when they choose, not in an order.

The crowd and herd behabuir

Economists have started incorporating investor psychology into finance over the last two decades to
try and explain unexpected or unpredictable data regarding fundamental financial theories like the
efficientmarket hypothesis (EMH) or capital asseaicmg model (CAPM) or Efficient Market
Hypothesis.

The field of behavioural finance assumes that, to some extent, all investors are irrational. This
FdadzYLJWiA2Yy | o02dzi Ay@Sadi2NERQ ANNIGA2yLFfAGE OlFy |
overreactions to information, seasonal stock price effects and herding amongst investors.



The reasons for rational behaviour have been detailed by Barberis and Thaler (2003), who give a two
definitions of investor rationality: 1), agents update their beliefsrectly when they receive new
AYF2NXEGA2YE AY GKS YIFIYySN)I RSAONAOSR o0& .le&SaqQ
GKFG FNB y2NXYIFGAGSte | OOSLIilIofSad obz2dlofes (GKS
event based on prior knoetlge of related conditions). in providing tip-date informationon
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Banerjee (1992), Bikhchandaniad. (1992), Welch (1992and.

Alternative crowds/herding models

Others think that people are generally bad at determining probabilities accurately, as detailed by
Fischhoff et al. (1977jor example. They report that overconfidence can lead people to predict an
occurrence with 100% certainty when the aat probability is, say, only 80%.

Similarly,Barber and Odean (19993ay investor overconfidence causes oetrading and can lead to
significant losses, as can ovand undefreaction to good and bad financial news as Barbaris et al.
(1998), Daniel eal. (1998) have explained.

Overconfidence can also affect not just individual investors, but the economy as a WhqR’002)
suggests there is a correlation between optimism/pessimism in wider society and financial market
conditions; specifically that geeling of optimism in society translates to more optimistic investors,
and hence more optimistic but riskier investments due also to the underestimation of relevant risks,
as highlighted byrischhoff et al. (1977) and Barber and Odean (1999).

Crowds andnformation cascades

LYF2NYIGA2y OFy Ydz GALX & GKNRdZAK INRdzZLIB 2F LIS2 LI

Bernardo and Welch (200d}scuss how the actions of a clique of overconfident investors can change
the decisions and outcomes of thetians of a larger group of investors. When too much emphasis is
put on private information, the total amount of information aggregation amongst the group increases.
This is due to investors placing less emphasis on the actions of the herd and an owaretigheir

(
(
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of the group, who then make irrational choicémderson and Holt (1996jave demonstrated these
information cascades in a laboratory segfin

Another phenomenon is also at play here: a person forms an opinion and sticks to their guns for too

f2y3as yIYSR WoSiLardetal. (ISRE KOS Ny ¥ DS Qi GBI LIS2LE S R2)

see evidence that contradicts their opinignwho wantsto be wrong?¢ and when presented with
evidence contrary to their beliefs, it seenwith scepticism. The result is that investors involved in a

LR2AAGADGS AYyTF2NXNIGA2y OFadlrRS K2fR 2yid2 (GKS GKAY

suggests that they should do the same and the positive cascade continues.

V. Model description

Cascadelynamics has often been described by ordinary differential equations, that assume that the
probability forspreadings uniform ( H. W.Hethcote,2000) However, social networks are not



uniformly mixed but are highly heterogeneoasdhave scaldree properties K. Ebe(2002) M.
Faloutsog1999).

we created a networlof emotional, semrational, and rational investor§Vere theemotions of
individual nodes is affected by the performance of the investment, as well as the emotion of the
neighbouring investors. The latter is the mechanism through which we define emotional cascades.
we adopt thesusceptibleinfected susceptibléSIS) model. The SIS model is one of the simplest
models in epidemiology and is also known as the contact prauesiel to model emotional.

In ournetwork, three group of investors were presented
1) Rational investor2) Emotional investor3) Semi¢ emotional investor

The three group of investors have different characteristics, for the ratiowaktors we assigned
zero emotionalityi.e emotion does not play any roleftineir trading, while the other two groups
emotional investors and sereimotional were assigned emotionalityom random fromUnif (-1,1)
distribution. See figure 4

In our network three grap of investors wer@resented thesethree group of investors have different
characteristics, for the rational investors w@ssignedero emotionalityi.e emotiondoes not play any
role intheir trading, while the other two groupsemational investors and sereimotionalinvestors-
we assigned emotionality from randomUnif (-1,1) distribution See figure 4

the emotional investor buying and selling is purely based ohhgis emotion toward the stock i.e. if
it is positivethey will buy if it is negativéhey will short sell while theRational Investor buy the stock
if it isvalue isundera perceived fundamental value and short sell the stock if it is alaqerceived
fundamental value. See figuethe Semiemotional investotrading ruleisacombinationof the two.
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Figure 4 show the distribution of emotion assigned to the sesmotional investors and fully
emotional investorsWhere 1 represenst positive love and-1 representnegative hate, Zeravas the
value assigned for the rational investors.
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Figure 5 show the rational investor trading rule for the uptrend price patéare the fundamental
value wasassigned aa 0.65*(Peakvalué) to ensure that there will ba periodwhere the stock price

is above and below the fundamental value.
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Figure 6 show the wealth change for the three group on investors for the price path at figure 5



Network Emotional cascade

Two mechanisms of emotional cascade were introdufiest, is stock price drivegecondisanetwork
induced emotional cascade.

In their first stages of the process, we assigned randomly love and hate emotion towards the stock, In
the latter stages, reality sets in and investors question their decisions and euphoric craze towards the
stocks if the stock price moves against thiitial beliefs, Taffler and Tuckett (2008heorise that
emotional investors let a range of unconscious arfdritile emotions dictate their actions regarding
dot.com stocks, rather than knowledge of company fundamental or future growth potential.

For the network emotionatascadewe implemented the susceptiblefected
susceptible (SIS) model. The SIS modeiesof the simplest models in epidemiology and is also
known as the contact process model. See figure 7

extent of emotion spread
v = Emotional propagation Reciprocal emotion spread
" (time stepping scheme)

Probability of spread

a= Emotional probability of affecting neighbour

Figure 7, Network induced emotional cascade

In our model, a population with N Investors categoised into two emotional compartments:
Positive (Pand Negative (N). The emotion is transmitted only when a susceptible Investors is in
contact with an anther investor.

In the case of a fully mixed population, the model is represented by two stochastic events:

- Stock price levethangeinducedemotionalCascade

0ao p o400 | Z—m Xdo om0
-Network induced emotional Cascade
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Where

i 9Y2GA2y Lt LINROS KAaldz2NEB FIFOG2N

hr 9Y20GA2y Lt LINRPOlIOAfAGE 2F FFFSOGAYI ySAIKO 2 dzNJ
T 9Y20A2yEE LINBLI IFGAZY

- A@ = x period moving average

0 O= price of stock at time (t)

%I O = Investor emotion at time (t)

. AE = network neighbours (i) emotions

Sothe change in wealth of each individual investors is given by the equation 1

O@E D QxS { QEQUO 00O z p ml° <«
e . LT

Whereemotionality in equation (1) is equal to
Rational Investors = zero
Emotional Investors = 1

Semiemotional Investors= random Uniform distribution (0,1)

in eq 3 above we see that for the case of rational investor the change in wealth is function of only the
price change and his/ her perceivehdamental value, but for the case of emotional investor it is
their emotion at time (t), while it is the combination of the two for the Semiotional investor.
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Network herding

We include a atwork preferential attachment to model herdiri§arabasiA-L.; R. Alber(1999),see
figure 8

Figure 8 show wealth preferential attachment network herding m@&dehbasi, AL.; R. Albert
(1999)

MostLINBFSNBY GALFE FGdF OKYSYG Y2RSta aSS17 G2 NBSANDB

A Soinfig8.1lLy @Sai2NJ o Aa GKS WNAROKQ y2RS®
A fig 8.2 Investor 6 breaks its tie with Investor 4
A Andreattachel to Investor 3
A The resuling network would look like fig.8
A ¢kKAa O2yOSLIi GNRSa (2 YAYAO GKS Omne@ltli 27F W
can produce a powelaw distribution.
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A We propose a fitness measure that is not based on its topology, understanding that topology
can change drastically on perfmance within the marketin fig 1.4 Investor 2 become the
best performing nodes.

A The networkreattach itself to a highly performinigvestor (fg 8.5, 8.6)

A Making the performing investor more centiiig (8.7,8.8)

In ourmodel,we createdA network iscreated that most accurately describes a real network. The
nodes represent investors, and the edges (the links) represent some social relationship between
them.

The performance of each of the investors is simulated.

The probability of rewiring a given coection is a flaf) for all edges (once).

An edge will be rewired to a given node with the probability:

Hp W DhE

If no suitable node is found, no rewiring occurs.

10 Qo Qo 1Q 0 ©QwB o 1Q 0
> P o wawao
Q ¢ Q¢ 0 ¢ »wQwa o 0 ¢
°© P 0 98 %asaos M°°
o p . B Q0 _ wQwaosd
Y p AO———O—————
Q o Qo B ©0Qoao

066 00INVQAQANL QWA 6
Qo B 0Q®ao
The rumberof nodes will increase for node
Overall dynamics of the topology will depend on the performance of the nodes and the proportion
of edges a node haSee figure 9.

p

time = 1 time = 20 time = 30

time = 40 time = 50 time = 60

Figure 9 NetworkHerdingViswalisationwere nodes represents arket paticipants and arrows
representLJ- NIi A @rikdJr y G Qa
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V.

Simulation results

A retwork of investorswere given four ewgenous price gths asseein figure 1Q were Investors
wealth waschanging over each time stepscording to eq. 3L y @ S &mckddalty was observed
and visualisedsee appendix using different network settingThemodel parameters are shown in

table 1.
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Figure (10 show four price patterns,sthapedu shapeduptrend and downtrend
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Time Time

Size of network (N)

i Minimum number of connections

T O Number of time steps

i T 9Y20A2yLf LINRO

hT 9Y2GA2Yy Il f LINEGreighbdun

T 9Y20A2YyEE LINE

- A@ = x period moving average

0 O= price of stock at time (t)

%I O = Investor emotion at time (t)

. AE = network neighbours (i) emotions

b2 Percentage of rational Investors

b %lp Percentage of emotional Investors

b3 #® Percentage of Ser@imotional Inestors
Probability of rewiring

Table 1 Model input Parameters
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The smulationwasconducted andnvestorsemotion were observed ovei00-time steps¢we conduct
a network parametesweepand observed emotionality cascade sensitivity as we altervalue of
the parameter Threeparameterswere of interest

1- Time to full cascadewnhich is the number of time steps it take for the all thetwork
participantsemotionality toconverge to Positive (1) or Negativé)(

2- The cnsity of the cascaderefers to a measure of how much ok y @ S EididNadty is
within asameamount of spacei.e variance of participant emotion.

3- Cascade parameter valueferee to the smallest value of the interested parametesfull

cascade occur.

Theresults are presented in table2

Cascade Emotion Trend Path Cascade Time step to | The censity of
parameters parametervalue | full cascade | cascad@ranked &
12)where 12 isthe
highestdensity.
Alpha Emotional probability | n shaperig 1 03¢hHF mvu 30 8
of affecting neighbour) Appendixl)
U shaperigs 04¢hi mv 40 2
Appendix1)
upwardrigs 0.7¢h/ mdv 30 10
Appendixl)
downwardrig 7 03¢hHh mv 30 9
Appendix1)
Beta(Emotional price history| n shapeigo 03(F mvu 60 2
factor) Appendix1)
U shapeig 1o 02(h mv 50 5
Appendixl)
upwardrig . 0.7 (A mvu 80 3
Appendix1)
downwardrig 03 (F mvu 30 6
12, Appendix1)
Gamma(Emotional n shapei =, 0.2 (fF mu 30 12
propagation) Appendixl)
U shapeig s, 001 (A mu 30 11
Appendixl)
upwardrig s, 05 (A mv 80 4
Appendixl)
downwardrig 0.3 (fH mvu 70 7
16, Appendix1)

Table 2 Simulation were conducted and emotiwas observed overlOOtime steps¢ during the
simulation we fixed all theetwork structure parameters i.eNetwork sizeto 50, anda minimum
numberof connections ta3. Using equal split between fundamentaitional trader, emotional and
semiemotional trader i.e 1/3.
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Network Structure Trend Path | Cascade Time step to The density of
parameter full cascade cascadgranked 1-
value 8) where 8 is the best

Density.
Size of network n shapei 23 104, o 10 8
Appendix1)
U shapeig 2, 104, o 20 7
Appendix1)
upwardig 2s 204, o 15 5
Appendix1)
downwardi| 10 ¢, o 20 6
26, Appendix1)

Minimum number of connections n shapeig B, 36 pnm 30 1
Appendix1)
U shapei s, 30 pnm 20 3
Appendix1)
upwardkig 20 306 pmm 40 2
Appendix1)
downwardis| 2 6 pnmn 70 4
21, Appendixl)

Table 3 Simulation were conducted and emotiwas observed oveld00time stepsi during the
simulation we fixed all the cascade emotjmarameters (i fi to 0.35 ,Using equal split between

fundamental rational trader, emotional and sembtional trader i.e 1/3.

Network Trend Path Cascade Time step to full | The density of
Property parameter cascade cascadgranked 1-
value 12)where 12 isthe
highestDensity.
Percentage of rationa n shapei ssappendix) 50%rthe rest is 75 2
Investors emotional
U shapeigss, appendixi) 50%0-the rest 45 4
is emotional
Upwardriga?, Appendix) 50%/0-the rest 30 1
is emotional
Downwaraigss, appendicy | 50%0-the rest 25 4
is emotional
Percentage of n Shap&g 27Appendix1) 100% 10 12
emotional Investors
U shapeig 28ppendixi) 100% 15 10
UpwardFig 29Appendix1) 100% 15 9
DOanard:ig 30Appendix1) 100% 20 11
Percentage of Semi | n shapeiga1, Appendixi) 509%®0-therest | No full cascade 5
emotional Investors is emotional
U shapeig s2appendixi) 50%0-the rest 25 6
is emotional
Upwardrig s3appendix) 50%/-the rest 100 7
is emotional
Downwarkigss appendivy | 50YH0-the rest 80 8
is emotional

Table 4 Simulation were conducted and emotiwasobserved ovet00time steps’ during the

simulation we fixed all the cascade emotion parametdfs to 0.35 we also fixed all the network

structure parameters i.e. Network size to 50, and minimum number of connections to 3
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VI. Discussion andconclusion

We havedevelopednetwork emotionalcascadeand herding model usingcalefree networksand showed
how thecascadeand herdingdeveloped and evolvedverfour price paths. In ourmodel three independent
parametersdictate the emotional cascad@lphg Beta, Gammahese three parametersontribute positively
andincreasethe likelihood of the emotionalcascaddo ocaur, andas thesegparametersincreasingn valuethe
density of the cascadiacreasec i.e reduce he variance of emotion cascade

Our simulation concluded that as the %number of the ke&participant which is classified agmotional
increaesin value thisincreasethe likelihood ofemotional cascade, and as the number of the market
participant decreasei.e the N size of the network decreadhis have also positive inducing effect on the
emotional cascadegegarding theminimum number of connectiothe more connectionsthe morelikelihood
that emotional cascadeill ocaur.

Finally, regarding trading performance/wealth the result wasa mixed, for the declining trend and the upward
trend emotional investors outperformed the other two gnpsi( rational fundament and seramotional
investors) but the story is the opposifor the U ad n shape trends, this is line with our expectation
becauseas the market is trendingmotionalinvestor willherd toward buying or selling stock and profit is
generated due to theontinuity of the trend .

figure 11showsystem diagranof the interaction of all theelement of our model noticeEmdional cascade
and Herdingnteractionwithin one system.

Probability of spreading

emotions (alpha)
4 _— Extent of emotion
L ~ spread (gamma)
»
WNetwork emotional
cascade
/' . Emotion factor affected by
/ price path (love or hate -
/ - beta)
ff \
Herding Vanance in
/ *. emobon Price pal:!:.
/ \
|r \‘-
!
Probability of \M‘H
rewiring ~ Market performance

Jwealth

Figure 11system dynamic model diagram efotional andherdingcascadewhere Blue line show positive
feedbackyed line negativdeedbackgreen is natural
Further work

17
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volatility clustering and fat tails in the distribution of returns. This can be doramplying method of
simulated moments (MSM)s a generic method for estimating parameters in statestmodels.

2) Introduce exogenous time series to the model to replicate real market trading Scenarios.

3) Investigate different model parameters, for example taking recentperformance of agents into
accountduringthe Herding/Emotional cascadeechanis.
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Appendix

Parameter Testing
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Emotion
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Figure (1) shows emotionalnvest or s emot i othenshapeapncg gt shovintnh U f
figure (2 ) were the other 0CG3aN=50kaddkrwpar amet ers ©D
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